Screening of Future Carbon Storage Sites

Screening & Prospect Evaluation

- Risk & Resource predictions
- Simple assumptions
- Probabilistic approach

Focus on Specific Assets

- Reservoir Engineering
- 3D models
- Dynamic modelling

Field Development

- Drilling
- Injection tests
- Monitoring

Screening & Prospect Evaluation

- Risk & Resource predictions
- Simple assumptions
- Probabilistic approach

Screening & Prospect Evaluation

- Risk & Resource predictions
- Simple assumptions
- Probabilistic approach

Screening & Prospect Evaluation

- Risk & Resource predictions
- Simple assumptions
- Probabilistic approach

Where to look for Carbon Storage Sites

Onshore versus offshore

ONSHORE

PROS

- Proximity to emissions
- Operations simpler

OFFSHORE

- Larger areas
- Less sensitive to environment

CONS

- Limited area
 - Urban centers
 - Nature reserves & drinking water
 - Old legacy wells
- Limited social acceptance

- Higher distance to emissions
- Operations more complex

Where to look for Carbon Storage Sites

Oil & gas basins?

PROS

- Good knowledge of geology
 - Stratigraphy
 - Reservoirs & Seals
 - Pressure & Temperature
- Potential reuse of transport infrastructure
- CONS
- Competition of operating space
 - Concessions & Legislation
 - Surface installations
 - Subsurface interactions
- Legacy wells
 - Possible weak points
- Competing fluids

Where to look for Carbon Storage Sites

Structured versus unstructured?

- PROS
- Easy to map
 - Focussed CO2 flow
 - Higher CO2 saturations
- CONS Limited area
 - Limited storage capacity

Much larger areas

PROS

CONS

- Much larger storage capacity
- Unfocussed CO2 flow
 - Control on containment

- Mapping of structure
- Estimation of pore space
- PVT & Seal

- How much could the trap contain?
 - Theoretical storage capacity
 - Effective storage capacity

[Mt] 182.07

250

PS0 186 P90 226

297

Theoretical CO2 mass

150

P10 135

42

- How much could the trap contain?
 - Theoretical storage capacity
 - Effective storage capacity
- What is the phase and density of CO2?
 - Pressure & temperature uncertainty
 - CO2 PVT model

- Mapping of structure
- Estimation of pore space
- PVT & Seal

- Mapping of structure
- Estimation of pore space
- PVT & Seal

- How much could the trap contain?
 - Theoretical storage capacity
 - Effective storage capacity
- What is the phase and density of CO2?
 - Pressure & temperature uncertainty
 - CO2 PVT model
- Is the seal strong enough?
 - Pressure versus leak-off pressure
 - Buoyancy versus seal capacity

- How much could the trap contain?
 - Theoretical storage capacity
 - Effective storage capacity
- What is the phase and density of CO2?
 - Pressure & temperature uncertainty
 - CO2 PVT model
- Is the seal strong enough?
 - Pressure versus leak-off pressure
 - Buoyancy versus seal capacity
- What happens in case of over-injection?
 - Leak and spill volumes & masses

Top leak into upper stratigraphy

- How much could the trap contain?
 - Theoretical storage capacity
 - Effective storage capacity
- What is the phase and density of CO2?
 - Pressure & temperature uncertainty
 - CO2 PVT model
- Is the seal strong enough?
 - Pressure versus leak-off pressure
 - Buoyancy versus seal capacity
- What happens in case of over-injection?
 - Leak and spill volumes & masses
 - Containment risk

Top leak into upper stratigraphy

- Mapping of (simple) structure
- Estimation of pore space
- What is the assessment unit?
 - Few geological boundaries
 - A prospect is an injection well and the associated plume
 - Concession boundaries

- What is theoretical storage capacity?
- What is the maximum amount which could effectively fit into one concession?
 - Effective storage capacity
 - Location of injection plume

• Plume modelling

- What is theoretical storage capacity?
- What is the maximum amount which could effectively fit into one concession?
 - Effective storage capacity
 - Location of injection plume

- Increasing likelihood of non-containment with increasing injection amount
- Is lateral outflow mass acceptable?

- What is theoretical storage capacity?
- What is the maximum amount which could effectively fit into one concession?
 - Effective storage capacity
 - Location of injection plume
- Do 50-100-150 Mt fit into one concession?
 - Increasing likelihood of non-containment with increasing injection amount
 - Is lateral outflow mass acceptable?
- What does a 100 Mt plume look like?
 - Is more than one block needed?
 - Which blocks?

PROS

• Only one well

• Well-known stratigraphy

- CONS
- Only one well

• Shallow

• What to do with the gas in place?

Zulu Øst Gas Discovery

Zulu Øst Gas Discovery

• Small gas discovery east of major oil fields

- Only one well
- Well-known stratigraphy
- Two reservoir layers
 - Upper reservoir has proven seal
 - Lower reservoir has more pore space
 - Lower store layer with upper buffer layer

CONS

- Only one well
- Shallow
- What to do with the gas in place?

Coskun & Huuse, 2022 MANCHESTER 1824

The University of Manchester

Zulu Øst Gas Discovery

• Small gas discovery east of major oil fields

PROS

- Only one well
- Well-known stratigraphy
- Two reservoir layers
 - Upper reservoir has proven seal
 - Lower reservoir has more pore space
 - Lower store layer with upper buffer layer

CONS

- Only one well
- Shallow
- What to do with the gas in place?

Conclusions

- Screening is not about getting it precisely right
- It is about testing scenarios and ranking assets

- We want to select the best assets for focus & development
- Time will tell how good we are at screening...

Screening & Prospect Evaluation

Focus on Specific Assets

Field Development

Conclusions

- At ArianeLogiX we build standard workflows and tools for Carbon Storage screening
- Currently cooperating with supermajors, national authorities and academia across Europe, United States and Australia

Screening & Prospect Evaluation

m.neumaier@ariane-logix.com

www.ariane-logix.com